A Numerical Investigation of the Performance of a Nacre-Like Composite under Blast Loading

Author:

Ghazlan Abdallah1,Ngo Tuan D.1,Lam Nelson1,Tran Phuong1

Affiliation:

1. University of Melbourne

Abstract

This paper investigates the behaviour of a bio-inspired finite element composite model (that mimics the structure of nacre, the inner layer of molluscan shells) under blast loading. Nacre, which has attracted the attention of researchers over the past few decades, comprises 95% aragonite, brittle voronoi-like polygonal tablets that are joined by an organic matrix and arranged in a brick and mortar type structure. In this work, the finite element model developed herein was constructed using voronoi diagrams and geometric algorithms capable of automatically generating staggered layers of voronoi-like aluminium tablets bonded together by a vinylester adhesive layer. Many studies have led to the belief that the magnificent toughness of nacre is mainly attributed to the inter-platelet adhesive bonds. Results obtained from the finite element analysis show that this is indeed true, and it is imperative that the adhesive bond exhibits adequate toughness in order to be able to spread damage across the entire composite, thereby delaying localised failure.

Publisher

Trans Tech Publications, Ltd.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3