Estimation of Sea Surface Temperature (SST) Using Split Window Methods for Monitoring Industrial Activity in Coastal Area

Author:

Cahyono Agung Budi1,Saptarini Dian2,Pribadi Cherie Bhekti3,Armono Haryo Dwito4

Affiliation:

1. Institut Teknologi Sepuluh Nopember

2. Biology, Faculty of Mathematics and Science, Institut Teknologi Sepuluh Nopember

3. Geomatics Engineering, Faculty of Civil Engineering and Planning, Institut Teknologi Sepuluh Nopember

4. Ocean Engineering, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember

Abstract

The three drivers of environmental change: climate change, population growth and economic growth, result in a range of pressures on our coastal environment. Coastal development for industry and farming are a major pressure on terrestrial and environmental quality. In their process most of industry using sea water as cooling water. When water used as a coolant is returned to the natural environment at a higher temperature, the change in temperature decreases oxygen supply and affects marine ecosystem. This research is presents results from ongoing study on application of Landsat 8 for monitoring the intensity and distribution area of sea surface temperature changed by the heated effluent discharge from the power plant on Paiton coast, Probolinggo, East Java province. Remote sensing technology using a thermal band in Operational Land Imager (OLI) sensor of Landsat 8 sattelite imagery (band 10 and band 11) are used to determine the intensity and distribution of temperature changes. Estimation of sea surface temperature (SST) using remote sensing technology is applied to provide ease of marine temperature monitoring with a large area coverage. The method used in this research using the Split Window Algorithm (SWA) methods which is an algorithm with ability to perform extraction of sea surface temperature (SST) with brigthness temperature (BT) value calculation on the band 10 and band 11 of Landsat 8. Formula which was used in this area is Ts = BT10 + (2.946*(BT10 - BT11)) - 0.038 (Ts is the surface temperature value (°C), BT10 is the brightness temperature value (°C) Band 10, BT11 is the brightness temperature value (°C) Band 11. The result of this algorithm shows the good performance with Root Mean Square Error (RMSE) amount 0.406.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3