Dynamic Fracture of Concrete–3D Numerical Study of Compact Tension Specimen

Author:

Ožbolt Joško1,Sharma Akanshu2,Reinhardt Hans Wolf1

Affiliation:

1. University of Stuttgart

2. Bhabha Atomic Research Centre

Abstract

The behavior of concrete structures is strongly influenced by the loading rate. Compared to quasi-static loading concrete loaded by impact loading acts in a different way. First, there is a strain-rate influence on strength, stiffness, and ductility, and, second, there are inertia forces activated. Both influences are clearly demonstrated in experiments. For concrete structures, which exhibit damage and fracture phenomena, the failure mode and cracking pattern depend on loading rate. Moreover, theoretical and experimental investigations indicate that after the crack reaches critical speed of propagation there is crack branching. The present paper focuses on 3D finite-element study of the crack propagation of the concrete compact tension specimen. The rate sensitive microplane model is used as a constitutive law for concrete. The strain-rate influence is captured by the activation energy theory. Inertia forces are implicitly accounted for through dynamic finite element analysis. The results of the study show that the fracture of the specimen strongly depends on the loading rate. For relatively low loading rates there is a single crack due to the mode-I fracture. However, with the increase of loading rate crack branching is observed. Up to certain threshold (critical) loading rate the maximal crack velocity increases with increase of loading rate, however, for higher loading rates maximal velocity of the crack propagation becomes independent of the loading rate. The critical crack velocity at the onset of crack branching is found to be approximately 500 to 600 m/s.

Publisher

Trans Tech Publications, Ltd.

Reference12 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Loading‐rate dependence of mode I crack growth in concrete;Fatigue & Fracture of Engineering Materials & Structures;2020-05

2. Dynamic Fracture of Cellular Cementitious Plates under Blast/Shock Loading;Poromechanics V;2013-06-18

3. Crack velocity-dependent dynamic tensile behavior of concrete;International Journal of Impact Engineering;2013-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3