Affiliation:
1. University of Stuttgart
2. Bhabha Atomic Research Centre
Abstract
The behavior of concrete structures is strongly influenced by the loading rate. Compared to quasi-static loading concrete loaded by impact loading acts in a different way. First, there is a strain-rate influence on strength, stiffness, and ductility, and, second, there are inertia forces activated. Both influences are clearly demonstrated in experiments. For concrete structures, which exhibit damage and fracture phenomena, the failure mode and cracking pattern depend on loading rate. Moreover, theoretical and experimental investigations indicate that after the crack reaches critical speed of propagation there is crack branching. The present paper focuses on 3D finite-element study of the crack propagation of the concrete compact tension specimen. The rate sensitive microplane model is used as a constitutive law for concrete. The strain-rate influence is captured by the activation energy theory. Inertia forces are implicitly accounted for through dynamic finite element analysis. The results of the study show that the fracture of the specimen strongly depends on the loading rate. For relatively low loading rates there is a single crack due to the mode-I fracture. However, with the increase of loading rate crack branching is observed. Up to certain threshold (critical) loading rate the maximal crack velocity increases with increase of loading rate, however, for higher loading rates maximal velocity of the crack propagation becomes independent of the loading rate. The critical crack velocity at the onset of crack branching is found to be approximately 500 to 600 m/s.
Publisher
Trans Tech Publications, Ltd.
Reference12 articles.
1. fib: New Model Code, Chapter 5, Code-type models for concrete behavior (Draft), (2010).
2. M. Curbach and J. Eibl, in: Engineering Fracture Mechanics, 35(1-3), 321-6 (1990).
3. P. Bischoff and S. Perry, in: Materials and Structures / MatOriaux et Constructions, 24, 425-450, (1991).
4. A. S. Krausz and K. Krausz: Fracture kinetics of crack growth (Kluwer, Dordrecht, The Netherlands 1988).
5. Z. P. Bažant, F. C. Caner, M. D. Adley and S. A. Akers, in: Journal of Engineering Mechanics, ASCE, 126(9), 962-970 (2000).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献