Affiliation:
1. Mar Baselios College of Engineering and Technology
Abstract
Functionally Graded Materials (FGM) are those materials which have continuous variation of material properties from metal phase to ceramic phase. Due to the continuous change in material properties of FGMs, the stress singularity at the interface between the two different materials is eliminated and thus the bonding strength is enhanced. They are widely used in high temperature environment such as nuclear reactors and rocket heat shields. The material property of FGM plate varies along the thickness direction and the variation is idealised by different mathematical idealisation techniques. This paper deals with the buckling behaviour of clamped PFGM plate under uniform temperature field. Thermal buckling behaviour of FGM plate has been obtained numerically through ANSYS software. The convergence study of the results is optimized by changing the mesh size. The critical buckling temperature rise obtained for functionally graded plates using ANSYS software are compared with the available literature. The effect of different parameters such as power-law index, thickness ratio, and aspect ratio on critical buckling temperature rise for temperature independent and dependent material properties of each constituent is also discussed. It is found that the critical buckling temperature rise decreases with the increase in power-law indices and thickness ratio and increases with increase in aspect ratio.
Publisher
Trans Tech Publications, Ltd.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献