Affiliation:
1. Nguyen Tat Thanh University
2. Universiti Malaysia Pahang
3. Hochiminh City University of Natural Resources and Environment (HCMUNRE)
Abstract
We investigated the use of durian shell-derived activated carbon (DSAC) for the removal of Cu2+. To determine the optimal condition for Cu2+ removal, the response surface methodology (RSM) was used to establish a second-order polynomial model with variables such as Cu2+ concentration (Ci), adsorbent dosage (dDSAC) and pH. With R2 = 0.9847 and P-value < 0.0001, the model was proved to be statistically significant. The RSM based confirmation test revealed that the removal of Cu2+ was maximum (99.6%) at optimal conditions: Ci = 61.6 mg/L, dDSAC = 5.0 g/L and pH = 5.2. Based on calculated R2, data fitness for adsorption isotherms were positioned as follows: Langmuir > Tempkin > Freundlich. In other words, monolayer adsorption was the most favorable behavior with maximum capacity of 76.92 mg/g from Langmuir model. Interestingly, DSAC was reused at least five times without a considerable decrease of Cu2+ removal efficiency. Therefore, durian shell can be used as a highly effective, reusable and promising raw material to fabricate the activated carbon.
Publisher
Trans Tech Publications, Ltd.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献