Rotor Vibration under the Coupled Effects of Mass Unbalance and Asymmetric Bearings

Author:

Spagnol Joseph Patrick1,Wu Helen1

Affiliation:

1. Western Sydney University

Abstract

Large unbalance in rotor-dynamic systems is typically responsible for high energy vibrations and the consequent decrease in machine life. This paper presents an analytical model developed using Lagrangian mechanics and partial differential equations (PDEs) for the purpose of early fault-detection in rotor-bearing systems. The model was validated through a Fortran based program, RDA99 developed by Adams (2010), by successfully quantifying the single-peak unbalance response of the simple 8 DOF and 12 DOF rotor-bearing mass stations over two cases. Case I uses bearings with symmetric stiffness and damping matrix. The critical speed for Case I occurred at 1690 rpm and orbital shapes of each mass station was found to be circular with forward-whirl orbits. In Case II asymmetrical bearing stiffness and damping coefficient matrices demonstrate an anisotropic system. Critical speed occurred at 1655 rpm and rotor, bearing and pedestal orbits were seen to be elliptical and changing with shaft speed. Both cases demonstrated a significant shaft bending contribution to the disk displacement.

Publisher

Trans Tech Publications, Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A 3-D finite element modeling method for time-varying rotor-support system based on rotating-fixed coordinates;Journal of Sound and Vibration;2024-01

2. Research on natural vibration responses based on asymmetrical dual-rotor model;Mechanism and Machine Theory;2022-01

3. Influence of Vertically Misaligned Bearing on Shaft Whirling Vibration;2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE);2019-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3