An Improved Cost Apportionment for Desalination Combined with Power Plant: An Exergetic Analyses

Author:

Shahzad Muhammad Wakil1,Ng Kim Choon2,Thu Kyaw2

Affiliation:

1. King Abdullah University of Science and Technology

2. National University of Singapore

Abstract

In this paper an improved method for fuel cost apportionment of a combined power cum a desalination plant is presented. The conventional analysis for cogeneration systems has been, hitherto, the energetic (enthalpy) method which is useful for efficiency evaluation purposes, but it may not be fully accurate for capturing the “quality of fuel energy” consumed by processes in producing two or more useful effects, e.g., electricity and water. An exergy destruction procedure is proposed for the cost apportionment of fuel energy consumed where the available work potential of expanding stream can be fully accounted for cost distribution of the designed processes. For example, the turbines, that is used for power generation, exploits mainly the sensible-energy changes of high enthalpy steam undergoing expansion at high pressures and temperatures, whilst the thermally-activated desalination processes, such as the multi-effect distillation (MED), needed only the high latent-heat of bled-steam but at low pressures that has negligible work potential if the steam were to be used in the turbines. From this analysis, the incurred exergy destruction by the desalination processes is only 2%-7% of the total destruction available to the plant with bled-steam up to 50% of the total flow. We examined the ratio of exergy destruction consumed by the water to power production and, such a ratio is used as a basis for the fuel-cost determination in the cogeneration plant. It captures not only the realistic exergetic value of bled-steam of MED desalination, but it exposes the major shortcomings of the conventional enthalpy changes where a disproportion share of the input fuel cost, up to 32% of the total fuel input, may have been erroneously apportioned and giving an unfair valuation of the operational water cost.

Publisher

Trans Tech Publications, Ltd.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3