Ultradispersed Powdery Y2O3-Bi2O3-ZnO Composition with High Chemical Homogeneity for Fine-Grained Ceramics

Author:

Trusova Elena A.1,Vokhmintcev Kirill V.1,Kirichenko Aleksey N.1

Affiliation:

1. A.A. Baikov Institute of Metallurgy and Materials Science

Abstract

The technologically acceptable modified sol-gel technique was developed for obtaining the ultradispersed powdery composition Y2O3-Bi2O3-ZnO, which is promising new generation material for photocatalysts and solar cells. The solution for preparing a sintering composition with a high chemical homogeneity was proposed to provide using ultradispersed powders consisting of ZnO nanoparticles (40-70 nm), decorating with Bi2O3 and Y2O3 particles with average size of 4-20 nm. All synthesized powders were characterized by XRD and TEM methods. It was found that ZnO surface differently affects the dispersity of Bi2O3 and Y2O3 in the composites. TEM microphotographs show that the Bi2O3 particles uniformly distributed over ZnO surface. The Bi2O3 particle size on ZnO surface was 5-11 nm, which is significantly less than in the single powder of Bi2O3 (110-130 nm). However, in the case of Y2O3 similar effect was not observed, and average size of its crystallites was 5-12 nm, which agrees well with particle sizes in single powder.

Publisher

Trans Tech Publications Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3