Affiliation:
1. Institute of Electronic Materials Technology
2. Polish Academy of Science
3. National Research Institute (ITeE-PIB)
Abstract
Copper-carbon composites are very promising functional materials used as electrical contact devices due to their high electrical conductivity, thermal conductivity and excellent wear resistance. In the present study the influence of carbon forms (including carbon nanotubes, graphite nanopowder and graphene) on the properties of copper matrix composites was examined. The composites were fabricated using the powder metallurgy method. The optimal parameters of the hot-pressing process in vacuum were fixed as follows: the temperature of 525°C, the pressure of 600 MPa and the time of 10 min. The wear tests were performed in dry conditions using an SRV (Schwingungs Reibung und Verschleiss) friction and wear tester in a reciprocating motion. The friction and wear behaviour of copper with 3 vol.% of carbon were investigated. Scanning electron microscopy (SEM) was used to analyse the worn surfaces and debris, and finally the wear mechanism was discussed.
Publisher
Trans Tech Publications Ltd