Influence of Annealing Environment and Film Thickness on the Phase Formation in the Ti/Si(100) and (Ti +Si)/Si(100) Thin Film Systems

Author:

Makogon Yu.N.1,Pavlova O.P.2,Sidorenko Sergey I.1,Beddies G.3,Mogilatenko A.V.4

Affiliation:

1. National Technical University of the Ukraine, Kiev Polytechnical Institute

2. National Technical University of Ukraine, Kiev Polytechnic Institute

3. Chemnitz University of Technology

4. Humboldt Universität zu Berlin

Abstract

Influence of an annealing environment and film thickness on the phase formation in the Ti(30 nm)/Si(100), [(Ti+Si) 200 nm]/Si(100) thin film systems produced by magnetron sputtering and the Ti(200 nm)/Si(100) thin film system produced by electron-beam sputtering were investigated by X-ray and electron diffraction, Auger electron spectroscopy (AES), secondary ion mass-spectrometry (SIMS) and resistivity measurements. Solid-state reactions in the thin film systems under investigation were caused by diffusion processes during annealing in the different gas environments: under vacuum of 10-4 - 10-7 Pa, flow of nitrogen and hydrogen. It is shown that the decrease of Ti layer thickness from 200 to 30 nm in the Ti/Si(100) film system causes the increase of the transition temperature of the metastable C49 TiSi2 phase to the stable C54 TiSi2 phase up to 1070 K at vacuum annealing. During annealing in the nitrogen flow of the Ti(30 nm)/Si(100) thin film system the C49 TiSi2 is the first crystal phase which is formed at 870 K. For annealings of the [(Ti+Si) 200 nm]/Si(100) thin film system by impulse heating method or for furnace annealings in inert gas atmosphere of N2, Ar, H or higher vacuum (10-5 Pa) the crystallization process has two stages: the first metastable C49 TiSi2 phase is formed at 870 K and then at higher temperatures it is transformed to the stable C54 TiSi2 phase.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Reference12 articles.

1. F. Nemouchi, D. Mangelinck, C. Bergman, P. Gas, U. Smith: Appl. Phys. Lett. Vol. 86 (2005), p.041903.

2. S.I. Sidorenko, К.N. Тu, Yu.N. Makogon, O.P. Pavlova, T.I. Verbitska, Yu.V. Nesterenko: Metalofizika i noveishie technologii. Vol. 25, No 5 (2003) p.613.

3. C. Lavoie, C. Coia, F.M. d'Herle, C. Detavernier, C. Cabral, P. Desjardins, A.J. Kellok: Defect and Diffusion Forum Vol. 237-240 (2005) p.825.

4. S. Ogawa, T. Yoshida and T. Kouzaki: Applied Physical Letters Vol. 56 (1990) p.725.

5. Hyeongtag Jeon, Heykyoung Won and Yangdo Kim: J. of the Korean Phys. Society Vol. 40, No. 5 (2002) p.903.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3