Local Vibrational Modes of Zn-H-P in GaP, InP and ZnTe

Author:

Torres Vitor J.B.1,Coutinho J.2,Briddon Patrick R.3

Affiliation:

1. Universidade de Aveiro

2. University of Aveiro

3. University of Newcastle

Abstract

We have investigated the hydrogenation of the zinc acceptor in GaP and InP, and of the phosphorus acceptor in ZnTe, by computer modeling. We used a density-functional supercell code and pseudopotentials to deal with the core electrons. However zinc 3d electrons were explicitly taken to be valence electrons. We have determined the relaxed atomic geometry for seven hydrogen sites. We have found that, in the lowest total energy configuration, hydrogen sits in a bond centered position between zinc and arsenic atoms in all GaP, InP and ZnTe semiconductors and is bonded to the phosphorus atom. We found metastable states, by 0.4, 0.4 and 0.5 eV, for structures where H is antibonding to the phosphorus atom for GaP, InP and ZnTe, respectively. The calculated local vibrational modes (LVM) for the bond-centered configuration agree, within 1%, with the experimental values of 2379.0 cm-1 for GaP:Zn-H, 2287.7 cm-1 for InP:Zn-H and 2193 cm-1 for ZnTe:P-H. The isotopic shift due to the replacement of deuterium by hydrogen is reproduced by less than 2.5% using experimental data. The decrease in the LVM when going from GaP to ZnTe, as the perfect bond length increases, is also well-reproduced. A wag mode at 496 cm-1 and lower LVM, a doublet at 329 cm-1 and a singlet at 242 cm-1, are predicted for P-H in ZnTe.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3