Affiliation:
1. Aix-Marseille Université
Abstract
We present an experimental study by Auger electron spectroscopy (AES) and low energy electron diffraction (LEED) of the dissolution of about one monolayer of silicon previously deposited at room temperature on Cu (001). The isochronal dissolution has been recorded in the temperature range [50-320°C] (annealing rate 1.5°C/min). The plateau observed in the kinetics dissolution for temperatures between 95°C and 240°C, reveals the formation of an intermetallic two dimensional superficial phase thermally stable in this range of temperature. On the plateau, LEED patterns show the formation of a (5x3) superstructure. Above 255°C, we observe a very fast dissolution of the surface alloy characteristic of a first-order surface transition. Isothermal dissolutions kinetics have been recorded above and under the surface transition temperature (250°C and 270°C). From these measurements, we have evaluated bulk diffusion coefficients of Si in Cu assuming a local equilibrium. The diffusion coefficients measured within this hypothesis at 250°C and 270°C are respectively higher and lower than those extrapolated from high temperature measurements for Ge in Cu.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Radiation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献