Microstructure and Phase Identification of Tertiary Oxide Scale on Steel by EBSD

Author:

Suarez Lucia1,Rodriguez-Calvillo Pablo1,Colás Rafael2,Houbaert Yvan3

Affiliation:

1. CTM - Technologic Centre

2. Universidad Autónoma de Nuevo León

3. Ghent University

Abstract

Oxide scales growing during hot rolling of steel represent an industrial and environmental problem. Tertiary oxide, which starts to form before entering the finishing stands, remains on the steel surface until the end of the process, affecting the final surface quality and the response to downstream processing. Characterizing scale layers and the scale/steel interface in terms of phase morphology, texture, grain structure and chemical composition is fundamental for a better understanding of their behaviour and the effect of thermomechanical cycles on the material response to further processing. Thin tertiary scale layers have been grown on ULC steel under controlled conditions in a laboratory device adequately positioned in a compression-testing machine, immediately before plane strain deformation. After heating under a protective atmosphere (nitrogen), the samples have been oxidized in air at 1050°C for a short oxidation time. Immediately after this controlled oxidation, some of the samples were subjected to plane strain compression (PSC) inside the experimental device, in order to simulate the finishing hot rolling process. Direct observations of oxide scale layers are impossible. The EBSD technique has been identified as a powerful tool that can be used to reveal the microstructure within the oxide scale and to distinguish between its constitutive phases, based on their distinct crystal lattices. The texture of the deformed oxide scales, originally grown on ULC steel, was determined in a SEM using the EBSD technique. This will help to achieve a better understanding of their complex deformation behaviour. Because the substrate deformation affects the oxide layer, orientation relationships between scale layer and substrate were measured and the crystallographic orientation between undeformed and deformed areas was determined. Strongly textured wustite grains with a clearly pronounced columnar structure were observed after oxidation at 1050°C. The detailed EBSD study reveals that the oxide layer is able to accommodate a significant amount of deformation.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3