Evolution of the Enriched Layer at the Oxide/Metal Interface during Oxidation of Recycled Steels with Copper and Copper+Nickel Residuals

Author:

Webler B.A.1,Sridhar S.1

Affiliation:

1. Carnegie Mellon University

Abstract

The presence of the residual element copper in recycled steels causes a surface cracking phenomenon during thermo-mechanical processing which is known as “hot shortness”. The cracks result from a copper-rich liquid that forms at the oxide/metal interface and subsequently embrittles austenite grain boundaries. Minimizing formation of the liquid phase would reduce or eliminate cracking. Thus, the evolution of the liquid layer is an important consideration when designing an optimal thermomechanical processing cycle in scrap-based steel plants. The time evolution of the liquid phase is dependent on the competing processes of enrichment rate due to iron oxidation and the rate of copper back-diffusion into the steel. This paper presents a fixed grid finite difference model that predicts the evolution of the enriched region as a result of a given oxidation kinetics and solution of Fick’s 2nd law. The model predictions are in agreement with measured data for the case of an iron alloy containing 0.3 wt% copper oxidized in air at 1150°C. Model predictions indicate that initial copper content, oxidation kinetics, and alloy microstructure (i.e. grain boundary diffusion) have the most significant influence on the copper-rich layer whereas the solubility increase due to nickel additions was not found to have an appreciable influence.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3