Triple-Defect B2 Binary Intermetallics: Bragg-Williams Solution and Monte Carlo Simulations

Author:

Biborski Andrzej1,Zosiak L.1,Abdank-Kozubski Rafal1

Affiliation:

1. Jagellonian University

Abstract

Surprisingly low rate of “order-order” kinetics in stoichiometric NiAl intermetallic known of very high vacancy concentration suggested a specific triple-defect mechanism of ordering/disordering in this system [1]. This mechanism implies a correlation between the concentrations of antisite defects and vacancies; the latters being trapped in triple defects and thus, inactive as atomic migration agents. The process was modelled by means of Monte Carlo (MC) simulations recognised as a powerful tool for such tasks [2], but requiring now the implementation of thermal vacancy thermodynamics. Temperature dependence of vacancy concentration in an AB B2 binary system was determined within an Ising-type model solved first in Bragg-Williams approximation [3] and then by means of MC simulation of a Grandcanonical Ensemble. Without any a priori assumptions concerning the formation of particular types of point defects the model yielded temperature domains where the concentrations of antisite defects and vacancies were proportional. The effect associated with the formation of triple defects appeared for specific values of atomic pair-interaction energies. Moreover, non-stoichiometric A-B systems with the same atomic pair-interaction energies showed the existence of constitutional vacancies at low temperatures. Monte Carlo simulations of “order-order” (disordering) kinetics in B2 AB systems modelled with triple-defect-promoting atomic pair-interaction energies were run with temperature-dependent concentra-tion (i.e. number) of vacancies given by the above model. The simulated relaxations showed two stages: (i) rapid formation of triple defects engaging almost all vacancies present in the system, (ii) very slow process of further generation of antisite defects until the equilibrium concentration was reached. The result reproduced very well the experimental observations [1].

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3