Human Action Recognition Using CNN-SVM Model

Author:

Athavale Vijay Anant1ORCID,Gupta Suresh Chand1,Kumar Deepak1,Savita 1

Affiliation:

1. Panipat Institute of Engineering and Technology

Abstract

In this paper, a pre-trained CNN model VGG16 with the SVM classifier is presented for the HAR task. The deep features are learned via the VGG16 pre-trained CNN model. The VGG 16 network is previously used for the image classification task. We used VGG16 for the signal classification of human activity, which is recorded by the accelerometer sensor of the mobile phone. The UniMiB dataset contains the 11771 samples of the daily life activity of humans. A Smartphone records these samples through the accelerometer sensor. The features are learned via the fifth max-pooling layer of the VGG16 CNN model and feed to the SVM classifier. The SVM classifier replaced the fully connected layer of the VGG16 model. The proposed VGG16-SVM model achieves effective and efficient results. The proposed method of VGG16-SVM is compared with the previously used schemes. The classification accuracy and F-Score are the evaluation parameters, and the proposed method provided 79.55% accuracy and 71.63% F-Score.

Publisher

Trans Tech Publications Ltd

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HTML5-based graphic image processing and collaborative drawing technology;Systems and Soft Computing;2024-12

2. Advancing Paddy Crop Productivity using Deep Learning Ensemble Approach;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

3. Sensor-Based Human Activity Recognition Using a Hybrid CNN-SVM Approach;2024 8th International Conference on Image and Signal Processing and their Applications (ISPA);2024-04-21

4. Posture recognition method of duty personnel based on human posture key points and convolutional neural network;Journal of Electronic Imaging;2024-04-18

5. A Novel CNN-SVM Hybrid Model for Human Activity Recognition;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3