Production and Characterization of RE3+:Yb2O3 Nanoparticles

Author:

Unal Fatma1ORCID,Kazmanli Kursat2

Affiliation:

1. Hitit University

2. Istanbul Technical University

Abstract

In this study, doped ytterbium oxide (Yb2O3) nanoparticles (NPs) with different dopant type (Eu and / or Tb) and undoped were synthesized by wet chemical method using nitrate salt as a starting source. Afterwards, they were calcined at 900 °C for 4 h. The crystal structure phase, size, and morphology of undoped and doped Yb2O3 nanoparticles (NPs) were characterized by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). Undoped and doped NPs were exhibited cubic bixbyite-type crystal structure (Ia-3 space group). Lattice parameter changes caused by dopant element in NPs were examined using X-ray peak profile analysis. In order to investigate the occuring changes in the crystal structure, average crystallite size (CS) and lattice parameter (LP) values were computed with Williamson–Hall (W–H) and Cohen-Wagner (C–W) methods, respectively. It was observed that the crystal structure of the doped NPs expanded compared to the undoped Yb2O3 NPs, which explains the increase in the LP and CS values. The LP values of all the NPs were ranged from 10.444 Å (R2 = 94.9) to 10.453 Å (R2 = 81.8) while the CS of them were between 19 nm (R2 = 95.9) and 24 nm (R2 = 88.8). All the NPs exhibited nearly spherical and agglomerate structure and there were also few pores between the agglomerate particles in the structure. Besides, continuous agglomerate morphology formation was observed in particles containing Tb. The average nanoparticle size values were varied between 46 and 115 nm depending on the dopant element.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthesis of ytterbium oxide powders with europium;Journal of the Australian Ceramic Society;2023-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3