Metal-Free and Carbon-Free Flexible Self-Supporting Thin Film Electrodes

Author:

Benbalit Chahrazad1,Frau Eleonora1,Scheuber Olivera1,Schintke Silvia1

Affiliation:

1. University of Applied Sciences Western Switzerland (HES-SO)

Abstract

Conductive polymers are promising for application in the medical and sport sectors, e.g. for thin wearable health monitoring systems. While many today’s electrodes contain either carbon or metals as electrically conductive filler materials, product design manufacturing has an increasing interest in the development of metal free and carbon free, purely polymer based electrode materials. While conducting polymers have generally rather low electrical conductivities compared to metals or carbon, they offer broad options for industrial processing, as well as for dedicated adjustments of final product properties and design aspect, such as colour, water repellence, or mechanical flexibility in addition to their electrical properties. The development of electrically conducting polymer blends, based on conductive polymers is thus timely and of high importance for the design of new attractive flexible electrodes. We have developed material formulation and processing techniques for the fabrication of self-supporting thin film electrodes based on polyaniline (PANI) and polyvinylidene fluoride (PVDF) blends. Electrical four-point probing was used to evaluate the electrode conductivity for different processing and fabrication techniques. Optical microscopy and atomic force microscopy measurements corroborate the observed electrical conductivity obtained even at low PANI concentrations revealing the nanoscale material distribution within the blends. Our self-supporting thin film electrodes are flexible, smooth, and water repellent and were furthermore successfully tested under bending and upon storage over a period of several months. This opens new perspectives for the design of metal free and carbon free flexible electrodes for medical, health, and sports applications.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3