Preparation and Characterization of Sr1−xNdxFe12O19 Derived from Steel-Waste Product via Mechanical Alloying

Author:

Daud Noruzaman1,Azis Raba’ah Syahidah1,Hashim Mansor1,Matori Khamirul Amin1,Jumiah Hassan1,Saiden N.M.1,Mohd Shahrani Nuraine Mariana1

Affiliation:

1. Universiti Putra Malaysia

Abstract

Steel waste product had been used as the main source of raw material in the preparation of permanent magnets ferrites. Steel waste product is an impure material that contains the iron oxide and impurities. The steel waste product is a form of flakes is grinding for several hours to form a fine powder. The iron oxide powder is separated from magnetic and non-magnetic particle using magnetic particle separation. The magnetic particle was again been purified by using the Curie temperature separation technique. The magnetic powder was carried out from the purification and oxidize at 500 °C for 6 hours at 2 °C/ mins to form the hematite, Fe2O3, used as a raw powder to prepare SrFe12O19. Microstructure of Nd-doped strontium ferrites, Sr1-xNdxFe12O19, with x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5, were prepared through a mechanical alloying technique. Several characterizations have been done, such as X-ray Diffraction (XRD) and Field emission scanning electron microscopy (FESEM). The magnetic properties of coercivity (Hc) and the energy product BHmax of samples are carried out. The magnetic properties of samples were investigated with an expectation of enhancing the magnetic properties by substitutions of Nd3+ ions on Fe3+ ion basis sites. The saturation magnetization Ms revealed magnetic behavior with respect to Nd3+ doping concentration, showing a decrease. The coercivity Hc increased with increasing Nd3+ doping concentration.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3