The Influence of Cooling Rate on Microstructure, Tensile and Fatigue Behavior of Heat-Treated Al-Si-Cu-Mg Alloys

Author:

Ceschini Lorella1,Morri Alessandro1,Toschi Stefania1,Seifeddine Salem2,Messieri Simone3

Affiliation:

1. University of Bologna

2. Jönköping University

3. Ducati Motor Holding

Abstract

Al-Si-Mg alloys are commonly employed for the production of automotive castings. In view of the recent stringent emissions standards and consequent engine downsizing, these components must withstand higher temperatures and stresses than in the past. In this regard, the heat treatable quaternary Al-Si-Cu-Mg alloys gained particular interest in recent years, due to their superior mechanical properties and higher thermal stability. The present research activity was addressed to evaluate the influence of cooling rate on microstructure and consequently on room temperature tensile and fatigue behaviour of the A354 and C355 alloys. Samples for mechanical tests were produced under controlled cooling rates, in order to induce different secondary dendrite arm spacing (SDAS) values, classified as fine (20-25μm) and coarse (50-70μm). The experimental results showed that the cooling rate strongly influences the type, size and morphology of intermetallic particles. The presence of coarse intermetallic phases, mostly Fe-based, observed in coarse SDAS specimens, was reported to strongly affect ultimate tensile strength (UTS), elongation to failure and fatigue strength of both the investigated alloys. A correlation between UTS and fatigue resistance was found, independent of microstructural coarseness.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3