Affiliation:
1. Northeastern University
2. University of Wollongong
Abstract
A refined microstructure consisting of martensite and retained austenite at room temperature has been produced in a Nb-microalloyed low carbon Si-Mn steel by a novel heat-treatment, pre-quenching prior to quenching and partitioning processes (Q&Q-P). The results showed that compared with the conventional quenching and partitioning steel the mechanical properties of steel obtained by the novel treatment have been significantly improved, with a good combination of ultimate tensile strength (1000MPa) and total elongation (above 30%). Meanwhile, the volume fraction of retained austenite has been increased. It was found that the improvement of mechanical properties was mainly attributed to the enhanced TRIP effect due to the relatively high fraction of metastable retained austenite at room temperature. The increased stability of austenite results from the C and Mn partitioning during inter-critical annealing, which increased the chemical stability of austenite. The formation of refined austenite at inter-critical annealing also had a positive effect on the stability of the austenite. As a consequence, the volume fraction of retained austenite at room temperature was significantly increased. Compared with the Q-P steel, the Q&Q-P steel exhibited higher work hardening exponents during the stage of TRIP effect and had the higher ductility.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献