The Effect of Boron Addition on Precipitation and Hot Ductility of 1.5Mn-0.1Nb-Ti Carbon Steels in As-Cast Condition

Author:

Komenda Jacek1,Martin David1,Lönnqvist Johan1

Affiliation:

1. Swerea KIMAB

Abstract

Twelve experimental steels with a base composition 1.5wt% Mn, 0.01 wt% V and 0.1 wt% Nb and varying C (0.05, 010 and 0.20 wt%), Ti (20 – 260 ppm) and B (0 – 100 ppm) contents have been systematically examined to quantify the effects of composition on precipitation behavio-ur and hot ductility during simulated continuous casting conditions. Nb-rich precipitates were present in the alloys with 0.10 wt-% C and 0.20 wt-% C. Alloys with 0.05, 010 and 0.20wt% C contained 50 – 100 nm size Ti-Nb carbonitrides. Boron was bound in 20 – 100 nm size boronitrides located in prior austenite grain boundaries. A Gleeble 3800 was used to study hot ductility and strain induced precipitation processes in the alloys. Alloys without B and Ti additions exhibited poor hot ductility at 850°C and 950°C, whereas the 0.05 wt-% C and 0.10 wt-% C alloys showed improved hot ductility (reduction in area 40-50%) by the addition of either >50 ppm B or 250 ppm Ti. The 0.2 wt-% C alloys showed no improvement from B or Ti additions. Examination of fracture surfaces of hot ductility specimens showed that boronitrides were located at prior austenite grain boundaries in alloys containing 80 – 100 ppm of B. Compression-relaxation tests showed that alloying with boron caused a noticeable decrease of the start temperature of strain-induced precipitation in the alloys.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3