Potential of 4H-SiC CMOS for High Temperature Applications Using Advanced Lateral p-MOSFETs

Author:

Albrecht Matthaeus1,Erlbacher Tobias2ORCID,Bauer Anton J.2,Frey Lothar1

Affiliation:

1. Chair of Electron Devices

2. Fraunhofer Institute of Integrated Systems and Device Technology (IISB)

Abstract

In this work, the impact of the n-well doping concentration on the channel mobility and threshold voltage of p-MOSFETs and their applications in CMOS-devices is evaluated. For this purpose lateral p-channel MOSFETs with different channel lengths (L = 800 μm, 10 μm, 5 μm, and 3 μm) and doping concentrations (ND = 1015 cm-3 and 8·1015 cm-3) were fabricated and the respective field-effect mobility was extracted from the transfer-characteristics. Comparable to n-MOSFETs the mobility of p-MOSFETs was found to be the highest for the lowest doping concentration in the channel and the absolute value of the threshold voltage increases with increasing doping concentration [4]. To investigate its suitability for CMOS applications, inverters with different doping concentrations for n-MOSFET (NA = 1015 cm-3 and 1017 cm-3) und p-MOSFET (ND = 1015 cm-3 and 8·1015 cm-3) were built. For logic levels of 0 V and 10 V, the voltage transfer characteristic with the highest input ranges was obtained for a low p-MOSFET and a high n-MOSFET doping concentration. The lowest propagation delay time could be achieved with a low p-MOSFET and a low n-MOSFET doping concentration. At room temperature as well as at high temperatures T = 573 K the drain current of p-MOSFETs with channel lengths below 3 μm is hampered by the series resistance of the source and drain region which limits the performance of CMOS devices.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3