Bending Collapse Behaviour of Polyurethane Foam-Filled Rectangular Magnesium Alloy AZ31B Tubes

Author:

Zhou Ping1,Beeh Elmar1,Friedrich Horst E.1,Kriescher Michael1,Straßburger Philipp1,Holzapfel Martin1,Kraft Harald2,Rieger Cedric1,Oswald Katja3,Roettger Jan4

Affiliation:

1. German Aerospace Centre (DLR)

2. German Aerospace Center (DLR)

3. Dow Europe GmbH

4. Dow Deutschland Anlagengesellschaft GmbH

Abstract

Quasi-static/dynamic three-point bending tests were conducted to assess the crash performance of magnesium alloy AZ31B extruded and sheet tubes at the German Aerospace Centre (DLR) – Institute of Vehicle Concepts in Stuttgart. Different foam-filled AZ31B beams with a variation of foam density and thickness were fabricated through several manufacturing processes: cold bending, tungsten inert gas welding, cathodic dip painting and polyurethane foam injection. The experimental results were compared with those from mild steel DC04 tubes. It shows that empty magnesium alloy AZ31B outperforms steel DC04 in terms of specific energy absorption for the empty tubes with equivalent volume when subjected to bending loads. It was found that the foam-filled tubes achieved much higher load carrying capacity and specific energy absorption than the empty tubes. Moreover, there is a tendency showing that a foam-filled beam with a higher foam density reaches higher load carrying capacity, but fractures earlier. The foam-filled AZ31B tube with 0.20 g/cm3foam obtained the highest specific energy absorption, but this outperformance was weakened due to the earlier fracture. In addition, the numerical simulation utilising material model MAT_124 in LS-DYNA explicit FEA package was performed. The simulation results indicate that using calibrated stress-strain curves and failure parameters, material model MAT_124 yields a general good agreement with the experimental results.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3