An Experimental Evaluation of Solid Lubricant Based Nanofluids in Small Quantity Cooling and Lubrication during Grinding

Author:

Paul Sourabh1,Ghosh Amitava1

Affiliation:

1. Indian Institute of Technology Madras

Abstract

Small quantity cooling lubrication (SQCL) with commercially available metal working fluids (MWF) and nanofluids has been attempted successfully in machining and grinding. Solid lubricants also provided some benefits in grinding of metallic alloys. However, there are very few studies using molybdenum di-sulphide (MoS2) and hexagonal boron nitride (hBN) dispersed nanofluids applied in SQCL mode in grinding. The aim of the present work is to experimentally study improvement in grinding of EN31 steel using alumina grinding wheel with aqueous MoS2 and hBN nanofluids. The grinding study is supported by detailed tribometry at 1 m/s sliding speed to reveal the possible reasons behind such improvement. MoS2 dispersed nanofluids provided minimum coefficient of friction in ball-on-disc test. It also provided the maximum reduction in specific grinding energy and improvement in surface finish with respect to flood cooling. hBN dispersed nanofluids could not match the performance of MoS2 dispersed nanofluids both in ball-on-disc and grinding experiments.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3