Affiliation:
1. North University of China
2. North University of China (NUC)
3. Taiyuan Iron and Steel (Group) Co. Ltd.
Abstract
The multi-pass hot compression deformation behavior of the cast alloy with the composition of Mg-13Gd-4Y-2Zn-0.6Zr, was investigated, and the four-pass compression tests were conducted at the temperatures ranging from 350°C to 500°C and strain rate 0.01 s-1. The experimental results showed that the alloys incurred different degrees of softening by multipass deformation. The microstructure evolution for the deformed alloy was investigated, the influence of the microstructure on the hardness properties of the alloy discussed. The tests reveal that dynamic recrystallization is not the main softening mechanism for this alloy; rather, kink deformation refines the grains to achieve the observed softening effect. The hardness test curve showed that the hardness increased gradually with an increasing number of deformation passes. The improvement of the main mechanical properties related to the strengthening by the grain refinement. In multipass deformation, the misorientation of the kink belt gradually increased,and refined the grains. On the other hand, the grain size of the eutectic phase at the grain boundary decreased with increase of deformation passes. In addition, the mechanical properties were improved by the distribution dispersion of tiny cuboidal particles and acicular-like phases in the matrix.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献