Utilization of Recycled Glass Waste as Partial Replacement of Fine Aggregate in Concrete Production

Author:

Rahim Nur Liza1,Che Amat Roshazita1,Ibrahim Norlia Mohamad1,Salehuddin Shamshinar1,Mohammed Syakirah Afiza1,Abdul Rahim Mustaqqim1

Affiliation:

1. Universiti Malaysia Perlis (UniMAP)

Abstract

Glass dust waste creates chronic environmental problems, mainly due to the inconsistency of waste glass streams. Glass is widely used in our lives through manufactured products such as sheet glass, bottles, glassware, and vacuum tubing. Glass is an ideal material for recycling. The use of recycled glass helps in energy saving. The increasing awareness of glass recycling speeds up inspections on the use of waste glass with different forms in various fields. One of its significant contributions is to the construction field where the waste glass was reused for concrete production. The properties of concretes containing glass dust waste as fine aggregate were investigated in this study. Glass dust waste was used as a partial replacement for sand at 10%, 20% and 50% of concrete mixes. Compression strength for 7, 14 and 28 days concrete of age were compared with those of concrete made with natural fine aggregates. The results proved that highest strength activity given by glass dust waste after 28 days. The compressive strength of specimens with 10% glass dust waste content were 32.9373 MPa, higher than the concrete control specimen at 28 days. Using glass dust waste in concrete is an interesting possibility for economy on waste disposal sites and conservation of natural resources.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3