Affiliation:
1. University of Quebec at Chicoutimi
Abstract
The corrosion behavior of Al-B4C metal matrix composites in H3BO3 solutions with different Cl- contents was investigated using potentiodynamic polarization and zero resistance ammetry techniques. Results show that the corrosion of Al-B4C composites in H3BO3 solution increases with increasing B4C volume fraction in the composites. The main corrosion characteristic of Al-B4C composites in H3BO3 solution is the galvanic corrosion between Al matrix and B4C particles. In the galvanic couple, B4C particle acts as cathode and Al matrix acts as anode. The cathodic reaction is hydrogen revolution reaction, which controls the corrosion mechanism of Al-B4C composites. Pitting is not observed on the composite surface in the H3BO3 solution with zero Cl-. However, with addition of Cl- in H3BO3 solution, pitting occurs and the corrosion resistance remarkably decreases with increasing Cl- content. The corrosion resistance of Al-B4C composites in H3BO3 solutions is compared with that in the standard 3.5% NaCl solution.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献