Determining a Flow Stress Model for High Temperature Deformation of Ti-6Al-4V

Author:

Calvert E.1,Pollard J.1,Jackson M.1,Wynne B.1,Thackray Richard1

Affiliation:

1. The University of Sheffield

Abstract

In some commercial titanium extrusion practices, twisting of the extrudate can occur, which can result in the need to crop the back and front end of the extruded material, thereby reducing yield and increasing material losses. Understanding more about the behaviour of material during the extrusion process, and investigating the cause of defects such as twisting by use of finite element (FE) modelling techniques could help to reduce these losses, improve the productivity of the extrusion process, and the overall quality of the material produced. One of the most important components of FE techniques for hot deformation is the type of flow stress model that is used in the simulations. In this investigation isothermal uniaxial compression testing was performed on cylindrical specimens of Ti-6Al-4V at temperatures ranging from 950 °C to 1200°C and strain rates of 0.1 s-1 to 50 s-1, to produce true stress against true strain and load against die travel curves which were subsequently used to develop a new specific flow stress model for use in hot deformation above the beta transus, which can ultimately be applied to the hot extrusion of Ti-6Al-4V. From analysis of this data it was concluded that flow softening and work hardening do not occur during deformation, and that low friction conditions exist between the material and the tooling. The activation energy for deformation was found to be 193178 J.mol-1, and the flow stress model was shown to give a good fit to the raw data at low strain rates, but this relationship broke down at higher strain rates. Finally the importance of generating a flow stress model specific to a particular operation, and set of experimental data, rather than relying on existing data available in the literature is demonstrated.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3