A Study on the Microstructural Characterization of René 142 Deposited Atop René 125 Processed through Scanning Laser Epitaxy

Author:

Basak Amrita1,Das Suman2

Affiliation:

1. George W. Woodruff School of Mechanical Engineering

2. Georgia Institute of Technology

Abstract

Advancements in the design, optimization and manufacture of turbine engine hot-section components during the past few decades have contributed enormously to the improvement in power-ratings and efficiency levels of gas turbine engines. Nickel-base superalloys are extensively used to produce the hot-section components as this class of alloys offer improved creep strength and higher fatigue resistance compared to other alloys due to the presence of precipitate-strengthening γ' phases i.e. Ni3[Ti, Al, Ta etc.] in the normally face centered cubic (FCC) structure of the solidified nickel. Although this second phase is the main reason for the improvement in properties, it also results in increased processing difficulty as these alloys are prone to crack formation. In this work, we demonstrate powder-bed additive manufacturing of René 142 onto René 125 substrates through scanning laser epitaxy (SLE). René 142 is a high strength, nickel-base directionally solidified (DS) alloy that has high rupture strength, excellent resistance to grain boundary cracking, and superior high-velocity oxidation resistance. Successful deposition of René 142 on René 125 provides an avenue to repair legacy hot-section components by depositing superior quality alloys at the damage locations. The microstructure of the deposited René 142 is observed to follow the polycrystalline or EQ morphology of the underlying René 125 substrate. The SLE processed René 142 exhibits dense and crack-free deposits, and microstructure refinement compared to the underlying cast René 125 substrate. This work is sponsored by the Office of Naval Research through grants N00014-11-1-0670 and N00014-14-1-0658.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3