Microstructures and Mechanical Properties of Extruded High-Purity Magnesium

Author:

Feng Xiao Hui1,Jia Hong Min1,Luo Tian Jiao1,Liu Yun Teng2,Zhou Ji Xue2,Li Yang De3,Li Wei Rong3,Yang Yuan Sheng1

Affiliation:

1. Chinese Academy of Sciences

2. Shandong Academy of Sciences

3. Dongguan Eontec Company Ltd

Abstract

The microstructure and mechanical properties of the high-purity magnesium (99.99wt.% Mg) extruded by single direct extrusion experiment were investigated. For the extrusion speed of 0.2mm/s, the microstructure of extruded Mg rods was composed of equiaxed fine dynamical recrystallized (DRXed) grains and some elongated coarse un-DRXed grains. The yield strength (YS) and the elongation of the extruded bars were 105.3MPa and 46.7% respectively. In the case of extrusion speed of 4.0mm/s, the DRXed grains were remarkably coarsened and the elongated coarse un-DRXed grains vanished, meanwhile lots of twins occurred and the intensity of basal-plane texture increased a little. With the extrusion speed being raised from 0.2mm/s to 4.0mm/s, the YS and the elongation decreased to 60.5MPa and 22.1% respectively, but the ultimate tensile strength (UTS) was improved from 154.7MPa to 178.8MPa.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3