Experiments and CFD Predictions of Particles Velocity and Trajectory in Flow with Non-Newtonian Fluid through a Partially Obstructed Duct

Author:

Bicalho Isabele Cristina1,dos Santos Dyovani Bruno Lima1,Ataíde Carlos Henrique1,Duarte Claudio Roberto1

Affiliation:

1. Federal University of Uberlândia

Abstract

Dynamic of particles in annular fluid flow is a very relevant subject for many industrial applications, especially for the oil and gas industry. Successful drilling is, to a large extent, dependent upon the ability of the drilling fluid to clean the hole by conveying the cuttings to the surface. The aim of this work was to evaluate experimentally and through numerical simulations, the helical path and the axial mean velocity developed by glass beads with diameter of 2.7 mm flowing with a non-Newtonian fluid through a partially obstructed annulus. Experimental data are reported for flow of 1 m3/h of an aqueous solution with 0.5% Xanthan gum through concentric annulus with partial obstruction of 6 mm and a 183 rpm rotation of the inner cylinder. Techniques of computational fluid dynamics (CFD) were applied to obtain detailed information about the flow field, allowing to estimate the radial position of launching of particles in the range of 35.5 mm to 39.1 mm. Comparisons between numerical calculations and the flow data indicated, in general, a very good agreement.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spiral laminar flow of yield-power-law fluids in partially blocked annulus;Journal of Dispersion Science and Technology;2020-07-20

2. Simplified modeling of laminar helical flow in eccentric annulus with YPL fluid;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2019-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3