Carbohydrate-Based Advanced Biomaterials for Food Sustainability: A Review

Author:

Valdés Arantzazu1,Garrigós María Carmen1

Affiliation:

1. University of Alicante

Abstract

The quality and safety of processed food strongly depend on their packaging and the protection that it provides. The increasing accumulation of synthetic non-biodegradable plastics in the environment represents a threat to the natural habitats. This has lead companies and researchers to explore different ways to develop bio-based polymers made from a variety of agricultural commodities and/or food waste products. Recently, plant-based polysaccharides such as hemicelluloses and celluloses have attracted attention as replacements for petroleum-based materials. In this context, the cell wall composition determines the quality of most plant-based products used in modern human societies. Nutritional and processing properties of plant-based foods are heavily influenced by wall properties. Fibres for textiles, paper manufacture, timber products and now, for fuel and bio-composites manufacture, are largely composed of, or derived from, walls. As the largest source of renewable carbon, plant cell walls have a critical future role in providing transport fuels, food security, functional foods to improve human health, and as raw materials for industrial processes. The use of cellulose materials as polysaccharides source offers the possibility of obtaining new advanced biomaterials for fresh or processed foods sustainability. In this review, the cell wall metabolism, extraction and hydrolyzation of polysaccharides in different microorganisms and plants, and their application for the development of new carbohydrate-based advanced biomaterials that can be applied for the food industry are reported.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3