Chemical Vapor Infiltration of Carbon Fiber Felts from Methane: Influence of Surface Area / Volume Ratios

Author:

Zhang W.G.1,Zhu Yong Ping2,Hüttinger K.J.1

Affiliation:

1. Universität Karlsruhe, Institut für Chemische Technik

2. Chinese Academy of Sciences

Abstract

Isothermal, isobaric chemical vapor infiltration of carbon fiber felts with fiber volume fractions of 7.1% and 14.2% were investigated at infiltration times from 20 to 120 hours, using a constant temperature of 1095 oC and a methane pressure of 22.5 kPa. Bulk densities and the density profiles as well as porosity at various densification stages were determined. Inside–outside densification was obtained in the most infiltrations, the gradients of densification along the infiltration depth decrease with increasing of residence time and infiltration times. Outside–inside densification occurs only in the felt with the lower fiber volume fraction at final infiltration stage and at longer residence times. Microstructure of the obtained matrix carbon was analyzed with a polarized light microscopy. Abruptly change from low/medium textured carbon to medium/high textured carbon are observed in both of the carbon fiber felts, whereas the thickness of the first lower textured layer is about 14 micros in the felt with a fiber volume fraction of 7.1%, whereas it is only 2 micros in the felt with a fiber volume fraction of 14.2%, which is caused by an increasing of initial surface area / volume ratio, [A/V], from 33 to 71 mm-1. Results are completely in agreement with the previous simulations studies on the influence of [A/V] ratios.

Publisher

Trans Tech Publications Ltd

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. References;Carbon Composites;2017

2. The modeling of realistic chemical vapor infiltration/deposition reactors;International Journal for Numerical Methods in Fluids;2009-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3