Thermo-Oxidative Behavior of Carbon Black Composites for Self-Regulating Heaters

Author:

Setnescu Radu1,Lungulescu Marius1,Bara Adela1,Caramitu Alina1,Mitrea Sorina1,Marinescu Virgil1,Culicov Otilia1

Affiliation:

1. National R&D Institute for Electrical Engineering INCDIE ICPE-CA Bucharest

Abstract

The composite materials for self-regulating heaters are conductive composites based on a polymer matrix and a dispersed conductive filler consisting in either carbon black or another carbon material, such as graphite or nanotubes. Similar materials are suitable for sensors and current limitations. As these materials used in heating applications work usually at elevated temperatures in presence of air, the ageing processes would be an important limiting factor of their lifetime. Therefore, thermal oxidation processes and crystallinity changes during the service of these products are of major interest in durability studies. The potential interference of carbon-based materials with the oxidation and ageing of polymer matrix shall be known in order to correctly estimate the durability of such materials. The effect of radiation exposure is studied taking into account the potential use of such materials in radiation environments. In this work, the activation energies of some initial, unaged and aged products at elevated temperatures are compared in order to characterize the effect of thermo-oxidative ageing and hence to evaluate their durability. The effect of some antioxidants is also discussed. The crystallinity, calculated from DSC was used for evaluation of the physical changes induced within the aged materials, following the procedures described in previous work. FTIR-ATR technique was used for characterization of chemical changes induced by ageing.

Publisher

Trans Tech Publications, Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3