Affiliation:
1. Université Ferhat Abbas Sétif-1
Abstract
In order to search the correlation between textural properties and geometrical heterogeneity in clays, as characterized by the surface fractal dimension, we used, three different cationic clays; namely Kaolin of Hamam Dbagh, Montmorillonite (Mt) of Maghnia and a sample prepared from Sodium Montmorillonte (Na-Mt)) and three different synthetic anionic clays, ZnAlCO3, MgAlCO3at a molar ratio equal to three (R=3), and NiAlCO3with different molar ratios (R=2, R=3 and R= 4). This DSparameter was evaluated from nitrogen (N2) analysis gas. the fractal Frenkel-Halsey-Hill (FHH) (DS) models was used to estimate the surface fractal dimensions at two ranges of relative pressure, the first between 0.08 and 0.22, which were found Ds to be 2.59, 2.53 and 2.68 from Kaolin, Montmorillonite and Sodium Montmorillonte clays respectively and 2.33, 2.61, 2.53, 2.56 and 2.56 for ZnAlCO3and MgAlCO3, NiAlCO3(2, 3 and 4) respectively, and other at medium relative pressure, which there was an excellent linear adjustment for F-H-H equation within the range between 0.37 and 0.82, which were found Ds to be 2.77, 2.64 and 2.82 for Kaolinite, Montmorillonite and Sodium Montmorillonte clays respectively, and 2.68, 2.64, 2.40, 2.60, 2.47 for ZnAlCO3, MgAlCO3, NiAlCO3(2, 3 and 4) respectively. SEM Characterization confirmed the heterogeneous distribution of the particles and the BET analysis confirmed the fractal nature of the surface of these materials. The zeta potential of the sample which is most used as an indicator of dispersion stability, show a proportionality between increases of zeta potential with increase of dimension fractal (DS), for the same type of clays ( (NiAlCO3) with (R=2, 3 and 4) and Mt, Na-Mt). Key words: Anionic clays; Cationic clays; Fractal dimension; geometrical heterogeneity; Frenkel-Halsey-Hill model.
Publisher
Trans Tech Publications, Ltd.