Effect of Type of Fiber on Inter-Layer Bond and Flexural Strengths of Extrusion-Based 3D Printed Geopolymer

Author:

Nematollahi Behzad1,Xia Ming1,Sanjayan Jay1,Vijay Praful2

Affiliation:

1. Swinburne University of Technology

2. TU Dresden

Abstract

Extrusion-based 3D concrete printing is analogous to fused deposition modeling method, which extrudes cementitious materials from a nozzle to build a complex concrete structure layer-by-layer without the use of expensive formwork. This study aims to investigate the influence of type of fiber on inter-layer bond strength and flexural strength of extrusion-based 3D printed geopolymer. An extrudable fly ash-based geopolymer composition previously developed by the authors was reinforced by three types of fibers, namely polyvinyl alcohol (PVA), polypropylene (PP) and polyphenylene benzobisoxazole (PBO) fibers. Control geopolymer specimens with no fiber were also 3D printed for comparison purposes. The results indicated that the incorporation of fibers reduced the inter-layer bond strength of 3D printed geopolymer. This pattern was true regardless of the type of fiber. On the other hand, the flexural strength of 3D printed fiber-reinforced geopolymer mixtures was substantially higher than that of the 3D printed geopolymer with no fiber. The rate of increase in the flexural strength depended on the type of fiber. The flexural failures of the specimens were due to the tensile failure of the bottom layer, rather than the shear failure of the interfaces.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3