Changing of Particle Size and Pore Structures of Calcium Oxide during Calcinations of Industrial Eggshell Waste

Author:

Putkham Apipong1,Ladhan Somchai1,Putkham Ajchara Imkum2

Affiliation:

1. Mahasarakham University

2. Naresuan University

Abstract

Surface area and particle size are significant properties of a catalyst that determine the reaction rate of the heterogeneous catalyst. In this research, calcium oxide derived from industrial eggshell waste was synthesized by thermal decomposition method under air-atmosphere. The obtained eggshell waste was washed, dried, and ground to 420 μm followed by calcination of the ground eggshell in different conditions including calcination temperature (800 to 900 °C) and holding time (1 to 4 hours). Changes of pore structure and the median particle size diameter of the obtained calcium oxides were systematically investigated by various scientific instruments. Results from powder X-ray diffractometer (PXRD) indicated that the calcium oxide can be obtained after calcination at both 800 and at 900°C. Laser diffractometer shows that median particle size diameter of calcium oxide significantly decreased by about 76-95 % with increasing of both calcination temperature and holding time. Additionally, specific surface area of calcium oxides determined by N2 adsorption experiment at-195 °C shows that surface area of calcium oxide dramatically decreased (37-84 %) with increasing both calcination temperature from 800 to 900 °C and calcination time from 1 to 4 hours. These results indicated that both calcination temperature and time play an important role in the shrinkage of pores of calcium oxide. Higher calcination temperature and longer holding time induce more shrinkage of pore leading to smaller particle size diameter and lower surface area of the calcium oxide catalyst.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3