Effect of C Content on High Temperature Erosive Wear Characteristics of Fe-Based V Containing Multi-Component Cast Steel with Ni

Author:

Shimizu Kazumichi1,Kusumoto Kenta1,Nakamura Kimitoshi1,Kiguchi Shoji2,Shirai Masato3,Ito Jun4

Affiliation:

1. Muroran Institute of Technology

2. Kinki University

3. Iwamizawa Imono. Co., Ltd.

4. Hokkaido Special Cast Steel Co., Ltd.

Abstract

Hot hardness and oxidation property of target material influences greatly on the erosion behavior at elevated temperature. The correlation between hot hardness and oxidation property of multi component white cast irons and its erosion resistance were investigated, and try to estimate the high temperature erosion behavior in the study. Nine kinds of multi component white cast iron and cast steel were used in this study. Specimen were machined into a flat plate with dimension of 50×50×10 mm. High temperature erosion test machine was used to investigate the erosive wear property of experimental materials at 1173K. Alumina grits (average diameter: 1.16 mm, hardness: 1250 HV1) which were used as impact particles were heated to 1073K and shoot on the heated specimen by hot air at the velocity of 100 m/s. The total particle loading was 2 kg. In order to clarify the correlation of hot hardness, oxidation property and the erosion resistance of specimens, hot hardness test was carried out specimens, to estimate erosion damage caused by solid particle. Hot hardness of specimens showed a value comparable to 200~250HV1. Result of erosion and oxidation tests, erosion rate and amount of oxidation of the specimen were suppressed by Ni addition. It suggested that the more amount of Ni contents, the lower the erosion rate and the less the amount of oxidation.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3