Affiliation:
1. University of Quebec at Chicoutimi
2. K-Line Insulators Limited
Abstract
Nature-inspired superhydrophobic surfaces have received immense industrial and academic interest due to their non-wettability and self-cleaning properties. To fabricate superhydrophobic silicone rubber surfaces, a simple, environmentally friendly atmospheric-pressure plasma treatment was applied. The effect of diverse plasma processing parameters on the final wettability behavior of the substrates, including plasma power, plasma frequency, number of passes, plasma jet speed, plasma cycle time and distance between the nuzzle outlet and substrate, were analyzed by means of design of experiments (DoE). Surface chemical characterization illustrated the influence of plasma treatment on the chemical composition of the produced silicone rubber. Furthermore, the presence of microstructures as well as the chemical composition of the surface was confirmed using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy analysis.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献