Effect of GMAW Shielding Gas on Tensile Strength of Dissimilar SS400 Carbon Steel and SUS304 Stainless Steel Butt Joint

Author:

Kimapong Kittipong1,Triwanapong Surat1

Affiliation:

1. Rajamangala University of Technology Thanyaburi

Abstract

An optimization of a gas metal arc welding (GMAW) process parameter is currently investigated for producing a dissimilar SS400/SUS304 steels joint because a requirement of a sound joint with higher tensile strength. A gas shielding type is one of the important parameter because it could produce a good arc, protect the weld pool from atmosphere and so on. So, this research work aimed to study an effect of the shielding gas type on the mechanical properties of the dissimilar SS400/SUS304 steels butt joint. A relation between microstructure and the mechanical properties of the butt joint was also investigated and compared. The summarized results are as follows. The optimized shielding gas that produced a maximum tensile stregnth of 550 MPa was 95%Ar+5%N2. Nitrogen gas that mixed to the shielding gas affected to decrease dendrite size and to increase the hardness and tensile strength of weld metal. Fracture characteristic of the joint produced by N2 mixed gas showed a larger deformation at the location that was closely the fracture location that implied a ductile behavior. The dissimilar SUS304/SS400 metals joint showed a low hardness base metal, a higher hardness interface and a highest hardness weld metal.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3