Interaction of Components of Co-Sn and Co-Sn-Cu Powder Materials in Liquid Phase Sintering

Author:

Sokolov Evgeniy Georgiyevich1,Ozolin Alexander Vitalyevich1,Svistun Lev Ivanovich1,Arefieva Svetlana Alexandrovna1

Affiliation:

1. Kuban State Technological University

Abstract

The interaction of components and structure formation were studied in liquid phase sintering of Co-Sn and Co-Sn-Cu powder materials. The powders of commercially pure metals were mixed with an organic binder and applied on the steel substrate. Sintering was performed under vacuum at temperatures of 820 and 1100 °C. The structure of sintered alloys was investigated by X-ray diffractometry and electron probe microanalysis, and microhardness (HV0.01) of the structural components was measured. It has been found that the nature of interaction of the liquid tin with the solid phase at the initial stage of sintering affects the formation of structure and porosity of Co-Sn and Co-Sn-Cu alloys considerably. In Co-Sn alloys, diffusion of tin into cobalt particles leads to the formation of intermetallic compounds, which hinders spreading of the liquid phase. This results in a porous defect structure formed in Co-Sn alloys. In Co-Sn-Cu alloys, at the initial stage of sintering the liquid phase enriched with copper is formed that wets the cobalt particles and contributes to their regrouping. As a result of this, materials with minor porosity are formed.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The problem of corrosion resistance of hard alloys;IV All-Russian (national) scientific conference with international participation: "Science, technology, society: Environmental engineering in the interests of sustainable development of territories";2023

2. Structure, classification and application of composite materials;IV All-Russian (national) scientific conference with international participation: "Science, technology, society: Environmental engineering in the interests of sustainable development of territories";2023

3. Corrosion and methods of material protection;IV All-Russian (national) scientific conference with international participation: "Science, technology, society: Environmental engineering in the interests of sustainable development of territories";2023

4. Structure Formation of Diamond-Containing Coatings during Sintering of Specially-Shaped Grinding Wheels;Coatings;2022-03-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3