The Features of a High-Temperature Synthesis of ZrO2 in a Core-Shell ZrO2@C Structure

Author:

Volodin Alexander M.1,Stoyanovskii Vladimir O.1ORCID,Zaykovskii Vladimir I.1,Kenzhin Roman M.1,Vedyagin Aleksey A.1

Affiliation:

1. Boreskov Institute of Catalysis SB RAS

Abstract

Zirconium oxide was obtained via traditional precipitation from a ZrOCl2 solution with ammonia followed by drying at 110 °C. The carbon-coated samples were synthesized by calcination of the pristine zirconia mixed with polyvinylalcohol. The obtained ZrO2@C samples of core-shell structure as well as the reference samples of pristine zirconia were calcined at different temperatures from 500 to 1400 °C. All the materials were examined by a set of physicochemical methods (a low-temperature argon adsorption, transmission electron microscopy, X-ray diffraction analysis, photoluminescence spectroscopy). It was found that the carbon coating prevents the sintering of the oxide nanoparticles, which allows one to maintain the specific surface area, the size of the oxide core and, finally, stabilize its phase composition. Transformation of the cubic phase into monoclinic phase becomes significantly complicated. Thus, 40% of the cubic phase was detected even after calcination of the ZrO2@C sample at 1400 °C. Moreover, the carbon-coated samples treated at elevated temperatures with subsequent removal of the carbon shell were found to possess the highest concentration of the defects related to a presence of the anion vacancies in zirconia.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3