The Influence of Complex Additive on Strength and Proper Deformations of Alkali-Activated Slag Cements

Author:

Krivenko Pavel V.1ORCID,Petropavlovskyi Oleh2ORCID,Rudenko Igor1,Konstantynovskyi Oleksandr P.1ORCID

Affiliation:

1. Kiev National University of Civil Engineering and Architecture

2. Kyiv National University of Construction and Architecture

Abstract

The peculiarity of alkali-activated slag cements (further, AASC’s) is increased proper deformations, which can cause increased cracking and reduced durability of structure. The paper is devoted to manage AASC’s proper deformations. The main task was to determine the composition of complex additives (further, CA’s) in system «ordinary portland cement (further, OPC) clinker - mineral compound of different anionic type - surfactant» in presence of sodium metasilicate (further, MS) to affect on hydrated AASC performance while ensuring effective structure of artificial stone by criterion of shrinkage deformations. Comparative analysis of hydrated cement systems "OPC clinker - MS", "OPC clinker - mineral compound - MS" and "OPC clinker - mineral compound - MS - surfactant" showed that the greatest effect on reduction of proper deformations occurs when the mineral compounds relate to electrolytes, i.e. Na2SO4 and NaNO3. Hydrated system is characterized by expansion (+0,062 mm/m) in presence of Na2SO4. Almost no shrinkage is supplied by application of NaNO3 (-0,062 mm/m). The obtained CA’s were tested in AASC. CA in the system “OPC clinker - NaNO3 - surfactant” provides the initial setting 43 min, the end - 65 min with accelerated strength. Investigated AASC can be classified as non-shrinking cement. This phenomena is ensured by increasing density, homogeneity and monolithicity of hydrosilicate formations, as well as due to formation of hydroaluminosilicate structures with different morphology by inclusion of nitrate anions.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3