Life Cycle Assessment of Lead Production in China

Author:

Sun Wan Yi1,Gong Xian Zheng1,Sun Bo Xue1,Ding Qing2

Affiliation:

1. Beijing University of Technology

2. China National Institute of Standardization

Abstract

This study analyzed the environmental impacts due to lead production in China, which is the largest producer and consumer of lead in the world, by the method of life cycle assessment (LCA). Based on the Chinese refined lead smelting process, a process-based life cycle assessment model was established to assess the environmental load of lead production system which includes the processes of mining, beneficiation, smelting, electrorefining and transportation. The result shows that the cumulative consumption of electricity and the cumulative emission of green house gases for the production of 1t of refined lead are 1111.93kWh and 2.06E+03kg CO2 eq, respectively. Smelting process is the largest contributor to the environmental impact load, accounting for 51.16% of the total environmental impact. The environmental category of human toxicity potential(HTP), accounting for 35.26% of the total environmental impact, is the largest contributor between different environmental categories to the total environmental impact, followed by metal depletion potential(MDP) and fossil depletion potential(FDP), accounting for 27.94% and 11.80% of the total environmental impact, respectively. Improving the resource efficiencies of the processes of smelting and beneficiation, and using cleaner energy to generate electricity are the key approaches to reduce the overall environmental impact of lead production in China.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3