Pozzolanic Reactivity of Coal Bottom Ash after Chemically Pre-Treated with Sulfuric Acid

Author:

Kusbiantoro Andri1,Hanani Amalina1,Embong Rahimah1

Affiliation:

1. Universiti Malaysia Pahang

Abstract

Current trend in construction industry has highlighted the use of silica-rich supplementary cementitious materials from industrial wastes in the production of concrete. Numerous studies have validated the pozzolanic properties of these materials, yet coal bottom ash received only infamous reputation as a pozzolanic material, owing to its low reactivity and heavy metals contaminants. Therefore this study was purposed to enhance the pozzolanic reactivity of coal bottom ash through chemical pre-treatment process. Different concentrations of acids and treatment period were studied to obtain optimum parameters for pre-treatment process. Treated ash was characterized for its chemical oxide composition. Its effect on the hydration of cement was studied through the inclusion as cement replacement material in mortar mixtures. From the chemical oxide compositions, a combination of 0.5 M of H2SO4 and 1 hour soaking duration presented the highest SiO2 proportion in the ash. Its inclusion at 5% (by weight of cement) to replace cement proportion in mortar mixtures was able to enhance the compressive strength of mortar at later age, regardless of its slower strength development in the early age. Utilizing treated coal bottom ash as partial cement replacement material has unlocked new achievement for greener future in construction industry.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3