Modeling and Optimization of Machining Parameters Using Regression and Cuckoo Search in Deep Hole Drilling Process

Author:

Mohamad Azizah1,Zain Azlan Mohd1,Mohd Yusof Noordin2,Najarian Farhad2,Alwee Razana1,Abdull Hamed Haza Nuzly1

Affiliation:

1. Universiti Teknologi Malaysia

2. UTM Skudai, Johor

Abstract

This study presents the modeling and optimization of the machining parameters in deep hole drilling process using statistical and soft computing technique. Regression analysis is used for modeling and Cuckoo Search, CS algorithm is used for the optimization process. Design of Experiment (DoE), have been carried using a Full Factorial design with added centre point that comprises of machining parameters (feed rate (f), spindle speed (s), depth of hole (d) and minimum quantity lubrication, MQL (m)) and machining performance which is surface roughness, Ra. Next, the mathematical models (Multiple Linear Regression, MLR and 2-factor interaction, 2FI) are developed for the experimental results of Ra and Analysis of variance, ANOVA are used to check the significance of the models developed. The results showed that both of mathematical models (MLR and 2FI) have outperformed the minimum Ra value compared to the experimental result.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3