Traffic Vertical Signposting: Materials Characterization and Structural Numerical Simulation

Author:

Franco Margarida C.1,Fonseca Rita1,Gomes Sara1,Biscaia Sara1,Brites Fernando1,Pascoal-Faria Paula1,Mateus Artur1

Affiliation:

1. Polytechnic Institute of Leiria

Abstract

The existing metallic solutions used for vertical traffic signs are associated with higher costs and environmental issues due to their manufacturing and degradation, when compared with polymeric solutions. Thus, the development of vertical signs considering the injection from polymeric materials in order to overcome problems related with sustainability, maintenance costs, and to achieve higher resistance to corrosion assumes nowadays an important role. The use of eco-friendly and innovative products considering the industrial waste combined with synthetic polymers performing the appropriate mechanical properties, can also be studied to find out new solutions that allow to solve the aforementioned problems. Additionally, these innovative vertical signs can contribute to avoid vandalism events related with theft and graffiti activities. This work presents the prior materials investigation and the structural design of vertical signs that are intended to be produced through polymer injection. Three main steps were considered: i) materials research, ii) materials characterisation through the analysis of polycarbonate resin isolated and in different sets of mixtures with different concentrations through tensile testing and static water contact angle measurements to find the optimal material composition; and iii) structural numerical simulation considering polycarbonate resin and using the current standard EN 12899-1 [1] to compute wind resistance, temporary and permanent deflections. Both experimental and numerical results led to an optimized proposal of the vertical signposting structural design.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3