A Computational Study on Structural and Electronic Properties of 1-(4-Chlorophenyl)-2-{[5-(4-Chlorophenyl)-1,2,3-Oxadiazol-2-Yl]Sulfanyl}Ethanone

Author:

Toh Pek Lan1,Meepripruk Montha2,Rasmidi Rosfayanti3

Affiliation:

1. Universiti Tunku Abdul Rahman

2. Kampheang Phet Rajabhat University

3. Universiti Teknologi Mara Sabah

Abstract

In this paper, a first principle Density Functional Theory (DFT) method was conducted to study the geometric and electronic structures of 1-(4-chlorophenyl)-2-{[5-(4-chlorophenyl) -1,3,4-oxadiazol-2-yl] sulfanyl} ethanone, C16H10Cl2N2O2S. Using B3LYP level of theory with four basis sets of 6-31G**, 6-31++G**, 6-311G**, and 6-311++G**, the equilibrium structure of the title molecule was used to determine the total energies, Frontier molecular orbital’s energies, Mulliken atomic charges, and others. The computed findings present that four total energies obtained are close to each other, with the corresponding values of-59716.06 eV, -59709.42 eV, -59708.56 eV, and-59716.51 eV, respectively for B3LYP/6-31G**, B3LYP/6-31++G**, B3LYP/6-311G**, and B3LYP/6-311++G** methods. The calculated HOMO-LUMO energy gaps were predicted in the range of 4.001 eV - 4.089 eV. In this study, the atomic charge values of molecular system were also determined using Mulliken Population Analysis (MPA) approach. For DFT/B3LYP/6-311G** level of calculation, the computed results show that the atom of C8 accommodates the highest negative charge in the title molecular system. All the oxygen, nitrogen, and chloride atoms are having negative charges, whereas all the hydrogen atoms are having positive charges. In addition, the dipole moment value was also determined to be 1.4758 Debye by employing DFT/B3LYP/6-311G** level of theory.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3