Study the Strength of Material and Composite Structures of Belly-Landing Mini UAV

Author:

Soetanto Maria Fransisca1,Tritjahjono Rachmad Imbang1

Affiliation:

1. Politeknik Negeri Bandung

Abstract

This paper consists of the design and analysis of the strength of material composite of the fuselage of a Belly-Landing Mini Unmanned Aerial Vehicle (UAV). A belly landing UAV occurs when an UAV lands without its landing gear and uses its underside, or belly, as its primary landing device. Belly landings carry the risk that the UAV may flip over, disintegrate, or catch fire if it lands too fast or too hard [1], so the more important designs parameters for materials used are the specific strength and specific stiffness. Specific strength is defined as the ultimate tensile strength divided by material density, and specific stiffness is defined as Young’s modulus of the material divided by density [Franklin, 2010]. The aim of this Belly Landing Mini UAV is for used in situations where manned flight is considered too risky or difficult and no runway for take-off or landing, such as fire fighting surveillance, while the term 'mini’ means the design of this UAV has a launch mass greater than 100 grams but less than 100 kilograms [2], the objective of this project is the development and design of materials fuselage of a mini UAV with two layer sandwich structures made from composite materials and epoxy resin. For that purposes, 3 variations of the composite materials tensile test specimens have been manufactured in accordance with ASTM D3039 standard and tested its strength. The results showed that the fibre glass and fibre carbon composite with resin epoxy has the maximum tensile strength and Young’s modulus, so that the fabrication and manufacturing of the fuselage component is made by using that material composite. The Von Mises stress is used to predict yielding of materials under any loading condition from results of simple uniaxial tensile tests by using software Autodesk Inventor 2012. The results show that the design is safe caused the strength of material is greater than the maximum value of Von Mises stress induced in the material. The results of flight tests show that this small UAV has successfully manoeuvred to fly, such as take off, some acrobatics when cruising and landing smoothly, which means that the calculation and analysis of structure and material used on the fuselage of the Mini UAV was able to be validated.

Publisher

Trans Tech Publications, Ltd.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wing analysis structure of fixed-wing VTOL UAV SA-1;AIP Conference Proceedings;2024

2. The design of bungee cord type launcher system for Serindit V-2 UAV;THE 2ND INTERNATIONAL CONFERENCE ON DESIGN, ENERGY, MATERIALS AND MANUFACTURE 2021 (ICDEMM 2021);2023

3. Experimental investigation on dynamic and static transverse behaviour of thin woven Carbon/Aramid hybrid laminates;Journal of King Saud University - Engineering Sciences;2020-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3